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Abstract

Treatment of convective and pressure fluxes in the Euler and Navier--Stokes equations using

splitting formulas for convective velocity and pressure is investigated. Two schemes m Controlled

Variation Scheme (CVS) and Advection Upstream Splitting Method (AUSM) -- are explored for

their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as

well as a one-dimensional combusting flow with a strong heat release source term. For

two--dimensional compressible flow computations, these two schemes are implemented in one of

the pressure-based algodth0as., whose very basis is the separate treatment of convective and pressure

fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes

in the pressure correction equation (which is derived from the momentum and continuity equations)

of the present algorithm, both first- and second order (with minmod limiter) flux estimations are

employed. Some issues resulting from the conventional use in pressure-based methods of a

staggered grid, for the location of velocity components and pressure, are also addressed. Using the

second--order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the

combination of upwinding and splitting for the convective and pressure fluxes separately exhibits

robust performance for a variety of flows and is particularly amenable for adoption in

pressure-based methods.

1. Introduction

For the hyperbolic system of Euler equations, a number of high resolution schemes have

been proposed to date. Most of these schemes are designed to satisfy the TVD property for scalar

conservation laws and systems of equations wi_ constant coefficients, whereby spurious

oscillations are suppressed. Several different approaches can be found in literature such as the

modified flux approach (scalar diffusion) of Harten [1], flux vector splittings [2, 3], flux differetice

splittings [4, 5], etc. All these schemes developed for the Euler equations can be directly extended to

the Navier-Stokes equations.



The main motivation behind the various approachesis to achievehigh accuracyand
efficiency in numerical computations,especiallyfor complex flows that may involve strong
convectiveeffects,sharpgradients,recirculation,chemicalreactionsand / or turbulence models.

Different schemes have different accuracy and efficiency characteristics. For example, flux vector

splitting schemes are quite efficient and relatively simple, but produce excessive smearing.

Moreover, the Steger-Warming splitting [2] produces glitches at points where eigenvalues change

sign, such as sonic points. Van Leer splitting [3] is designed to remedy this, but it suffers from

excessive numerical diffusion in viscous regions. Subsequent efforts have been made to reduce this

diffusion (H__nel & Schwane [6]). On the other hand, flux difference splittings such as Roe and Osher

splittings, have substantially lesser numerical diffusion. However, they too are known to yield

inaccurate results in some simple flows. For example, Roe splitting produces non-physical

"carbuncle" shocks in supersonic flows over blunt bodies [7].

Taking all the above factors into account, there is continued interest and ongoing effort in the

development of new schemes which are robust in terms of accuracy as well as efficiency. Towards

this end, one promising approach that is currently under investigation is the treatment of convective

and pressure fluxes as two separate entities. Employing this idea, Thakur and Shyy [8-11] have

developed a Controlled Variation Scheme (CVS) in which the convective flux is estimated using

Harten's second--order TVD scheme (modified flux approach) where the local characteristic speeds

of the different equations are coordinated by assigning them the values of the local convective

speeds; the pressure terms are treated as source terms and are central differenced or treated in a

special manner by employing Strang's time-splitting technique. Liou and Steffen [7] have also

proposed a scheme, called the Advection Upstream Splitting Method (AUSM) which treats the

convective terms and the pressure terms separately. In the AUSM scheme, the interface convective

velocity is obtained by an appropriate splitting and the convected variable is upwinded based on the

sign of the interface convective velocity. The pressure terms are also handled using an appropriate

splitting formula. For both the CVS and AUSM schemes, the operation count is substantially smaller

compared to Roe and Osher schemes since both CVS and AUSM do not entail the evaluation of

either Jacobian matrices or intermediate states.

In the controlled variation scheme (CVS) presented here, guided by the eigenvalues of the

total flux as well as the individual convective and pressure fluxes, the treatment is as follows. The

convective flux is fully upwinded whereas the pressure flux is split yielding contributions from

upstream and downstream neighbors. Two different formulations which lead to different pressure

fluxes, are investigated. The eigenvalues of the respective pressure fluxes are used to interpret the

physical significance of the two formulations. It is shown that the formulation which is consistent

with the physical mechanism that the convective fluxes get transported at the mean convection speed

and the pressure signals propagate both upstream and downstream in subsonic flows, is perhaps the

more desirable one. Two one-dimensional test cases -- the standard shock tube problem and a

longitudinal combustion instability problem previously investigated by Shyy et al. [ 12] m are used

to demonstrate that the CVS and the AUSM scheme yield accuracy comparable to the Roe scheme.

The results for the combustion instability problem, in particular, illustrate that the approach of



treatingconvectiveandpressurefluxesseparatelycanindeedcoordinatesignalpropagationevenin
thepresenceof sourcetermssuchasheatrelease.

As far asthesolutionof themulti-dimensionalNavier-Stokesequationsis concerned,two
broadcategoriesof algorithmsarein commonuse,namelythedensity-basedandpressure-based
algorithms.The attentionof the presentwork is on the pressure-basedmethods.Thesetypesof
algorithms,thoughoriginally developedfor incompressibleflows [13], canbeeasilyextendedfor
compressibleflows [14].Thepressure-basedalgorithmstreattheconvectiveandpressurefluxesas
two separateentities.However,to date,no theoreticalfoundationhasbeenlaid for incorporatingthe
modemshockcapturingschemesinto thesepressure-basedalgorithmsfor compressibleflows. In
the presentwork, the controlled variation scheme(CVS) developedearlier in the context of
pressure-basedmethodsfor incompressibleflows [10,11]isextendedfor compressibleflows.The
presentwork investigatestheapplicabilityof therecentpressuresplittingformulasproposedbyLiou
& Steffen [7] in the context of their AUSM schemeinto the pressure-basedmethods.It is
demonstratedthatvia theCVSandAUSM typeschemes,thepressure-basedalgorithmscanindeed
yieldaccuratesimulationsof complexcompressibleflows includinghighresolutionof shockwaves.

2. Estimation of Fluxes for the CVS and AUSM Schemes

The one--dimensional system of conservation laws for an ideal gas is the following:

0_.___W+ 0___FF= 0 (la)Ot Ox

where W= F = mu + p = u +

I(E + p)uJ I. Hu (lb)

Here, E is the total energy, E = o(e + u2/2), and H=E+p is the total enthalpy. A numerical scheme for

Eq. (1 a) can be written as, for example

,[O[ F n + l - r::&) ,_]_i+l + k i+1/2 = Wn - 2(1 - 0) (Fi+i/2 - F. n 1/2) (2)

where L=At/Ax, F i + 1/2 are the numerical fluxes at the control volume interfaces, the superscripts n

and n+l represent time levels and 0 is a measure of implicitness of the scheme. We obtain explicit,

fully implicit and Crank-Nicolson schemes for 0 = 0, 1 and 1/2, respectively.

A recent approach is to treat convection and acoustic wave propagation as physically distinct

(but coupled) mechanisms. The breakup of the total flux into convective and pressure fluxes can be

done in at least two different ways as presented next.

(a) Formulation 1: Based on Total Enthalpy

One way of breaking up the total flux into convective and pressure fluxes is to treat the total

energy flux (Hu) as part of the convective flux. Thus, the pressure flux consists of just the p term in

the momentum flux:



F = FC + Fp = mu +
u

= M_ + F p = M o ua +

toH j

(3a)

(3b)

Such a breakup of the total flux has been used, for example, in the AUSM scheme of Liou and Steffen

[71.

(b) Formulation 2: Based on Total Energy

Another way of breaking up the total flux into convective and pressure fluxes is to treat the

energy flux (Eu) as part of the convective flux. Thus, the pressure flux now consists of p and pu

terms:

F = F c + F e = mu +
Eu u

We first present the treatment of the convective flux for either of the above two formulations.

(4)

2.1 Convective Fluxes

2.1.1 Controlled Variation Scheme (CVS)

As developed previously, the CVS utilizes the form of TVD type schemes -- originally

defined by Harten [1] -- while defining the characteristic speeds in a different way [10]. The

numerical convective flux F ci+ 1/2 using a first--order TVD scheme [1] can be written as:

FC+i/2--1[ FC-] - FC+!- a(bi+,/2) Ai+l/2 W}

where Q is the convective dissipation function given by

Ibl

if Ibl < (5

if Ibl - 5

(5)

(6a)

and A i + 112 W = Wi + 1 - Wi • (6b)

The parameter (_ in Eq. (6) is used to eliminate the violation of the entropy condition for

characteristic speeds close to zero [1] and bi+ 1/2 is the local characteristic speed on the right

interface of the control volume.

Let w represent the dependent variable of each of the scalar conservation laws comprising

the system (1) and let frepresent the respective convective flux:
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The local characteristic speed bi+ 1/2 is defined as follows:

i+l/2W if Ai+l/2W ;_ 0
b i = (Sa)

+ 1/2 /

[-_-ff if A i + 1/2 W = 0

and Zl i+ l/EW = Wi+ l - wi " (8b)

In the present work, we employ the explicit scheme (0 = 0) for one-dimensional unsteady

flow problems and the fully implicit scheme (i.e., 0 = 1) for multi--dimensional steady flow cases

as the basis for development of the controlled variation scheme (CVS). For the latter, the implicit

and highly nonlinear equations would require iterations at every timestep if a time-stepping

approach to steady state is employed. If an infinite timestep is chosen to solve for steady state, as

in the present study, the number of iterations required to achieve convergence will be very large.

Consequently, some linearized versions of implicit TVD schemes have been devised [15-17]. We

base our scheme on the linearized non--conservative implicit (LNI) scheme described by Yee

[15,16], foUowing which f/+ 1/2 - fi- 1/2 can be written as

[ _A .]n+l

fi+l + fi - Qkbi+w2}'--'i+w2w|

-- fi -- fi-1 + Q(bi-1/2)'di-l/2W I|
idl

++,1[ 7+. ;+,wi+ 1 -- Wi] -- -- bi- 1/2 - Qi- 1/2 (wi -- Wi- 1 (9)

f/+l/2 -- fi-l/2] n+l =

= l[bi+l/2- Qi+l/2] n+

The superscripts n and n+l signify the previous and current iteration levels at steady state,

respectively. The above nonlinear equation can be linearized by dropping the superscripts of the

coefficients of A i + 1/2 wn + 1 from n+ 1 to n. This form can be shown to be TVD [16]. This form of

the implicit scheme cannot be expressed in conservation form and thus it is non-conservative except

at steady state where it has been shown that it does reduce to a conservative form [16].

In the CVS, the local characteristic speed bi+ 1/2 for the system (1) is defined as the local

convective speed:

bi+ll 2 = ½(u i + ui+l) (10)

Also, in the CVS, the parameter 6 is used to regulate the amount of numerical dissipation in the

scheme.

2.1.2 The A USM Scheme

We now briefly present the treatment of convective flux in the AUSM scheme proposed by

Liou and Steffen [7] which also treats the convective terms and pressure terms separately. The



numericalconvectiveflux, for the AUSM scheme,atan interfaceis writtenas:

F c = ( ) (11)
i+1/2 Mi+l/2 _i+1/2 L/R

where Mi+ 1/2 is the interface convective velocity and • is the convected variable.

The interface convective Mach number is expressed as the sum of the split values of the

positive and negative contributions from the left and right states of the interface:

Mi+I/2-- (Mi+I/2)L + (Mi+I/2) R (12)

For first-order accuracy, the left (L) and the fight (R) states on the (i+1/2) interface are obtained by a

first-order extrapolation of the nodal values of the left and the fight neighbors of the interface:

(Mi+1/2) L _ M_ (Mi+I/2)R = M/__ l (13)

The spitting chosen here (based on the van Leer splitting for the Euler equations) is the following:

+ I(M + 1) 2, if IMI <__1, (14)
M ±

1z(M + IM1), otherwise

The convected variable is upwinded, depending on the sign of the interface velocity, as

follows:

f(t_i+ 1/2)L, if Mi+ i/2 -> 0,

For first-order accuracy, a first-order extrapolation using one upwind nodal value is employed:

_1_i+1/2 L = t_i t_i+l/2 R

2.1.3 Formulation of the Fluxes of the CVS and A USM Schemes

Wada and Liou [ 18] have proposed a version of the AUSM scheme based on flux difference

splitting, labelled as AUSMD. It is interesting to note that the estimation of the convective fluxes

in the momentum equations by the AUSMD scheme is identical to that of the linearized CVS scheme

for steady state computations, except the interface convective velocities are estimated differently

in the two schemes. The net convective flux along the x-direction, for example, using the CVS

scheme, Eq, (9), with 6 = 0, can be expressed as follows:

1 o- (u,-
= 1 (u -- Ui+l/2) (ui+ 1 - ui)-10i_1/2(- ui_l/2 _ u I_I/21) (ui-- ui-1)

2Qi+ I/2\ i+ 1/2

(17)



In theAUSMD scheme,theconvectiveflux is expressedasfollows:

_1 u - 1

+ U i (_i+l/2Ui+l/2 -- Qi_l/2Ui_i/2)

- u,)]

I[(QU)i_I/2(Ui_ I + Ui)- I(eu)i_l/U[(u,- u,_l)]

- lu,-ui- l

(18)

From Eqs. (17) and (18), it can be seen that

2 1/2 ]cvs

+ U i (ei+l/2Ui+l/2 -- Oi__l/2Ui__l/2) (19)

The last term in the above expression is nothing but the nodal value of the dependent variable

multiplied by the net mass flux in the x--direction. A similar expression results from the convective

fluxes along the y-direction. Thus the difference between the numerical convective fluxes between

the CVS and the AUSMD schemes is the net mass flux term integrated over a control volume, which

must be zero at steady state (from the continuity equation). Thus, for steady state applications, the

two flux estimations are identical. The only difference is the method of estimation of the interfacial

velocities -- the CVS scheme just averages the nodal point values (Eq. 10) whereas the AUSMD

scheme uses splitting based on the local Mach number (Eq. 12).

2.2. Treatment of Pressure Flux

As mentioned earlier, the pressure flux is treated separately in both CVS and AUSM type

schemes. Different approaches can be taken as described next.

2.2.1 Spfitting of the p term

Thep term in the momentum equation for both the formulations given by Eqs. (3) and (4) can

be treated by splitting as follows:

i+ 1/2 Pi+ 1/2 Pi+ 1/2 L

For first-order accuracy, the left (L) and the right (R) states on the (i+1/2) interface are obtained by a

first-order extrapolation of the nodalp values of, respectively, the left and the right neighbors of the

interface (Fig. 1).

The splitting of pressure can be achieved in a manner similar to the van Leer splitting for the

fluxes of the Euler equations [3]. The van Leer splitting is based on the requirements that the split

fluxes as well as their first-derivatives be continuous and that the split fluxes be polynomials of the

7



lowest possible degree. This leads to a splitting of the fluxes in terms of factors (M + 1 )2. Liou et

al. [ 19] have suggested a similar splitting for pressure:

p = a[(M+ 1) 2- (M- 1) 2]+/3[(M+ 1) 2+(M- 1) 2] (21)

By choosing 2t3=p (which is true for M=0), we obtain

a = - lpM (22)

and hence p can be written as

P(M + 1)2( - M + 2) + P(M + 1)2(M + 2) (23)P

Thus, as suggested by Liou and Steffen [7] and Liou et al. [19], the following splitting is employed:

P(M + 1)2(2 q= M), iflMI _< 1,
p + = (24)

P (M :t: IMi)/M, otherwise

Thus, for supersonic flow, the above formulation leads to full upwinding of pressure, namely,

Pi+1/2 = Pi , if IM1 > 1 and M > 0 (25)

The splitting takes place only for subsonic flow where contributions from both upwind and

downwind neighbors are taken into account:

Pi+ 1/2 = _Di) + "{- (Pi+ 1)-' if IMI -< 1

= l(M i+ 1)2(2-Mi)Pi + I(Mi+I-1)2( 2 + Mi+l) Pi+l (26)

This is consistent with the fact that pressure signal propagates only in the upwind direction for

supersonic flows and in both upwind and downwind directions for subsonic flows. The pressure flux

at the interface can also be interpreted as the following:

Pi+ 1/2 = l(pi + Pi+ 1)- 1Q/P+I/2 A i+I/2P (27a)

with Q_+I/2 = 1Mi+I/2( 3 - M/2+I/2) (27b)

where Q_+ 1/2 is the numerical diffusion introduced by the pressure splitting to the central difference

flux and M i + 1/2 is the interface Mach number. It can be observed that as M i + 1/2 increases from 0 to

1, Q_+ 1/2varies from 0 to 1 smoothly, changing the nature of the pressure splitting from central

differencing (for M i + 1/2 = 0) to full upwinding (for M i + 1/2 = 1) in a continuous manner.



Eigenvalues

We next present a brief analysis of the eigenvalues associated with the convective and

pressure fluxes. It must be stated at the outset that one has to examine the eigenvalues of the total

combined flux (convective and pressure) in order to interpret the true nature of signal propagation in

the gas dynamic system. However, the following analysis gives an idea of the nature of the

convective and pressure fluxes in the two formulations given by Eqs. (3) and (4). In particular, from

the viewpoint of operator splitting, the following analysis will be relevant to the individual

components of convective and pressure fluxes, respectively. Also, this breakup of the total flux is

expected to be more critical for the CVS since in this scheme, the coupling between the convective

and pressure fluxes is not explicitly coordinated as a function of the local Mach number, as in the

AUSM scheme. For the convective and pressure fluxes given by Eq. (3), the Jacobians of the

convective and pressure fluxes are given by the following

0 1

AC =_ OF c _ -u 2 2u

OW _7__ u + (, _ 1)u 3 ),_ _3(y _ 1)u 2
0l0 (28a)

yu

0 0 0
Ap = OFP _ (7 - 1)_ - (7 - 1)u (7 - 1)aW

0 0 0

(28b)

where 7 is the ratio of specific heats of the gas. The eigenvalues of the above Jacobians can be found

by solving the equations

A c - A c I = 0 A p - A p I = 0 (29)

where I is the identity matrix, resulting in the following eigenvalues for the convective and pressure

Fluxes:

A c = A p = - (7 - 1) (30)
0

which seem to indicate that the convective flux has an upwind character and that the pressure flux has

a downwind character only. In accordance with the physical characteristics, it is desirable that the

convective fluxes are completely upwinded and pressure fluxes are split based on the local Mach

number. It is this thought which prompts us to investigate Formulation 2 (Eq. 4) which is perhaps

more consistent with the numerical treatment of the individual (convective and pressure) fluxes.

If the three equations -- continuity, momentum and energy -- are looked upon as a

collection of three scalar conservation laws, as in the case of sequential solvers [8,9], then the

characteristic speeds that one obtains for the convective terms in the three equations are

( u, u, 7u ). Likewise, for the pressure terms in the three equations, the characteristic speeds are

(0,-(7- 1)u, 0).

9



2.2.2 Splitting of the pu term

For formulation 2, given by Eq. (4), the pressure flux has thepu term in the energy equation,

which can also be split in a manner similar to the p term in the momentum equation. As suggested by

Liou et al. [19], the pu term can be expressed as consisting of (M ± 1) 2 factors occurring in the

splitting for p and a quadratic function in u:

pu = O--_(M + l)2(au 2 + 2Bua + Ca 2) -O--_(M- 1)2(au 2- 2Bua + Ca 2) (31)

= (A + B)ou 3 + (B + C)oua 2

The 0u 3 term can be eliminated by enforcing the condition

A + B = 0 (32a)

to obtain

B + C = _ (32b)
oa 2

Thus, a family of infinite choices for splitting pu are possible based on the parameter B. From the

consideration of the total energy flux in the Euler equations, van Leer has proposed the following

choice of B:

h/a 2
B = (33)

1 + 2h/a 2

where h = H/O. The simplest choice, as proposed by Hanel et al. [20] is

B=0 (34)

Thus, as suggested by Liou et aI. [19], in the present study, the following splitting is employed:

f-4- ¼0a(M +l)2(Au2 4- 2Bua + Ca2), if IM1 _< 1,
(35)

pu ± = 17(M + IMI)/M, otherwise

Eigenvalues

For the convective and pressure fluxes given by Eq. (4), the Jacobians of the convective and

pressure fluxes are given by the following

0 1 0

OF c - u 2 2u 0

AC = O"-W = E
-# u

Ap _ OFP
OW

0

(y - 1)_

(y- 1)(-Eu+ u 3)

- (y- 1)u

0

(7- 1)

(y - 1)u

(36a)

(36b)

The eigenvalues of the above Jacobians are:

10



Z p =

0

-_c
(37)

which indicate that the convective flux has an upwind character and that the pressure flux has both a

downwind and an upwind character. The eigenvalues of the pressure flux in this formulation also

suggest that the speed of propagation of pressure signals is dependent on the acoustic speed. Thus, it

appears that Formulation 2 is more consistent with the dynamics of the system if one treats

convection and acoustic wave propagation as two separate entities. Once again, it must be stated that

Formulations 1 and 2 are expected to make more difference for the CVS than the AUSM scheme due

to the reasons stated earlier.

If the three equations in the Euler system (continuity, momentum and energy equations) are

looked upon as a collection of three scalar conservation laws, then the characteristic speeds that one

obtains for the convective terms in the three equations are ( u, u, u ). Likewise, for the pressure

terms in the three equations, the characteristic speeds are ( 0, -(y - 1)u, (y - 1)u ).

2.3 Roe Scheme

In the present paper, the performance of the CVS and AUSM schemes is compared with that

of the Roe scheme (which treats the convective and pressure fluxes as one combined flux and is

considered as the most accurate of the approximate RJemann solvers) for some one--dimensional test

cases. We briefly present the fluxes of the Roe scheme to contrast those of the CVS and AUSM. The

Roe scheme [4, 21] is based on a characteristic decomposition of flux differences:

Fi+l - gi = X(Wi+l/2 ) (Wi+ 1 - Wi ) (38)

w_oreX--(W,+,,_)is,_o_ineanze__oo-avo_a_o_marx._onumo.c_,uxof_o_o_s_emoa,
an interface for each of the three equations is given by

where _ and

3

s,.+,_:½(s,+s,.+,)- ½El _1,,,+,_:w<'_
j:l

R are respectively the eigenvalues and eigenvectors of Wi + 1/2 :

r3 = u+_"

[g+ uFj

_1=u-_ 2"2=u

r,: __.

(39)

(40a)

(40b)

Here the A i+/2 w's are the characteristic variables which represent the magnitudes of the waves at

the interfaces and are given by:

11



where A u =- A i + l/2u

root of densities:

= Ui+ 1

ZIW(1) = _-

A w (2) =

A w (3) =

=-AP Au (41a)

pc

dp
AQ =2 (41b)

C

==A--pP+ du (41c)

Qc

-- /Zi, etc. All the variables are weighted by the ratio of the square

Ri+ 1/2 -- _Qi+ 1/Qi (42a)

Ui+ 1/2 = Ri+ 1/2 Oi (42b)

Ui+ 1/2 Ri+ 1/2ui+ 1 q" ui
Ri+ 1/2 + 1 (42c)

_i+ 1/2 -" Ri+ 1�2Hi+ 1 + Hi
Ri+ 1/2 + 1 (42d)

Ci+l/2 = (y- 1) +1/2--_u (42e)

2.4 Numerical Dissipation of the Various Schemes

The net interfacial flux for each of the schemes discussed in the previous sections can be

expressed as follows:

CVS: Fi+l/2 --_ l[ Fc + FC+l - Qi+l/2 Ai+I/2W] .k- Pi+l/2 (43a)

AUSM: El+I�2- l [Mi+l/2( @i + _i+1)- IMi+l/2[ ZIi+l/2 q)] + Pi+1/2 (43b)

Roe:

In all of the above schemes, the last term in the square brackets represents the numerical dissipation

added to the central difference scheme. A significant contrast among the above schemes is that the

the computation of the linearized matrix A--_Wi+ 1/2), unlike both CVS andRoe scheme involves
/

AUSM schemes. In the AUSM scheme, the coupling between the numerical convective and pressure

fluxes via the splitting formulas for both velocity and pressure at the control volume interfaces is

expected to coordinate signal propagation, thus yielding no spurious oscillations. In the CVS, too,

there is such a coupling but perhaps to a lesser degree since interfacial velocity is directly estimated

by two-point averaging. However, the parameter 6 in the CVS serves to regulate the amount of

numerical dissipation in order to suppress spurious oscillations should they occur.

12



3. Extension to Second-Order Spatial Accuracy

The net flux for each of the schemes discussed in the previous sections is spatially first-order

accurate. One can extend the net flux formally to second-order accuracy by employing a variable

extrapolation or a flux extrapolation approach. The latter is chosen here.

Let the total first-order flux at an interface be given by f/+ 1/2 where the various quantities at

the interfaces are defined by fh'st-order extrapolations. We define f/ = f(ui) as point-valued fluxes

at cell centers.

A general expression for a higher-order flux at the interface can be written as [22]:

f(2) =fi+l/2 + -- f/- 1/2) + _ -- f/+ 1/2Ji+1/2 2[. 2 2 +1

For × - 1, we obtain the second-order central difference scheme whereas x = -1 yields the fully

upwind second--order scheme. Choosing × - -1, the second--order interface flux becomes:

fi 2) =fi+l/2+ l[(fi-fi-1/2)+(fi+ -fi+3/2)] (45)+ I/2 1

which can be expressed with the use of limiters (for suppression of oscillations), as follows:

f/(2) = fi+ 1/2 +1 7,(r/+_ I/2)" (fi -- fi-1/2) -- 1 ip(r/_3/2) " (fi+ -- fi+3/2) (46)+1/2 2 1

where

fi+2 -- f/+3/2 fi-1 --f/-1/2
r + = r/_. 1/2 = (47)

i+ 1/2 fi+ 1 -- fi+ 1/2 fi - fi+ 1/2

The function _(r) is the flux limiter mentioned above. The minmod flux limiter has been employed

in the present study, namely:

Minmod limiter : g/(r) = max[0, rain(l, r)] (48)

Other limiters such as van Leer's monotonic limiter or Roe's superbee limiter can also be used.

For the implicit version of the CVS, the second-order interracial flux can be written as

follows:

1 r +

which can be furthersimplified,using Eq. (8a),as follows:

1 r + 1/2}" (Wi W,_J_/2+)I/2= fi+I/2 + 4_/1(i-I/2) {bi-I/2 + Qi- - I)

+ {-,,,.,.,:,+ w,,.l)
Similarly,.-_2)I/2can be writtenas
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fi2 ,,2- + {b,_3,2+Qi3,2}(w,_,wi21
+ 1/p(r/_l,2)" {-- bi+1,2 + Qi+l/2)" (Wi+l- wi) (51)

Finally, from Eqs. (7), (50) and (51), we get the following net flux for the linearized implicit

version of the CVS

_ + 1 r + (w i

I + (w'-'- ° (52)

4. Results of One-Dimensional Test Cases

Two one-dimensional cases are investigated in the present study. The first one is the standard

shock tube problem. The second problem involves the simulation of a longitudinal combustion

instability which involves thermoacoustic coupling due to the interplay between pressure

oscillations and periodic heat release in the combustor.

4.1 Shock Tube Problem

The shock tube problem presented here has been previously investigated in Thakur & Shyy

[8,9]. The initial conditions on the left and the right of the diaphragm are reported there. In the

present work, we study the CVS and AUSM schemes in terms of their capacity to resolve

discontinuities such as shock waves and contact surfaces. The total length of the tube is 14 units with

the initial location of the diaphragm in the middle of the tube. 141 grid points are used and the value

of X- At/Ax is 0,1, Results are presented in the form of total energy profiles after 200 time steps. For

all the results presented in the following, the fluxes of all the schemes employed have been

extrapolated to second--order using the minmod limiter.

Figures 2 and 3 show the total energy profiles obtained with Formulations 1 and 2,

respectively (as classified in Section 2), of the CVS, using two values of the parameter t5 which

regulates the amount of numerical dissipation. It can be observed that Formulation 1, which treats

only thep term as part of the pressure flux, yields a slight overshoot near the shock location, as seen in

Fig. 2(a). For both the values of tS, Formulation 2 yields solution profiles which are qualitatively

better than those obtained with Formulation 1, consistent with the interpretation of the eigenvalues

of the Jacobian matrices for the two formulations, discussed in Section 2. Comparing these profiles

with those obtained using the second-order Roe scheme, shown in Fig. 7, it can be observed that the

CVS, especially with Formulation 2, yields accuracy comparable to the Roe scheme.
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The solution profiles obtained with the second-order AUSM scheme are shown in Fig. 4.

Again, both formulations for the convective and pressure fluxes are investigated. It is seen that the

AUSM scheme yields results with Formulation 1 which are comparable with those obtained with

Formulation 2. A possible explanation is that the AUSM scheme uses splittings for both the

convective interface velocity and the pressure flux along with upwinding for the convected

variables. Thus, the u-velocity of the eigenvalues in Section 2, for the AUSM scheme, already

exhibits directional bias according to the local Mach number, which is not the case for the CVS. The

AUSM scheme, like the CVS, also yields results of accuracy comparable to those obtained with the

Roe scheme (Fig. 7).

A Note on the Implementation of Pressure Splittings

As far as the splitting for thepu term is concerned, numerous choices are available based on

the parameter B, as discussed in Section 2.2.2. The splitting suggested by van Leer based on Eq. (33)

and by H_aeI et aL [20] based on Eq. (34) have both been implemented for the shock tube problem.

They yield virtually the same results.

The pressure splittings given by Eq. (24) for Formulation 1 and Eqs. (24) and (35) for

Formulation 2 of the CVS can be implemented in different ways. One method is to use Eq. (26) for

the p term where the nodal Mach numbers are used, and a similar equation for the pu term; this is the

implementation employed for the results shown in Figs. 2 and 3. This is the original splitting for the

pressure flux employed in the AUSM scheme of Liou & Steffen [7]. The other method is to use the

interface Mach number, e.g., Eq. (27) for the p term. This expression for the pressure flux is similar

to the one employed in the CUSP (Convective Upwind and Split Pressure) scheme of Jameson [25].

The energy profiles obtained using this implementation for pressure splitting in Formulation 1 of the

CVS are shown in Fig. 5. Although these two implementations appear to be very similar, they yield

very different results, as seen from Fig. 2 and Fig. 5. The first implementation appears to be quite

robust whereas the second implementation yields spurious oscillations in the entire solution profile.

These oscillations can be reduced by increasing the amount of numerical dissipation (by increasing

6), but this is accompanied by an overall smearing of the solution profile, as seen in Fig. 5(b).

The two above-mentioned implementations for the splitting of pressure flux have also been

investigated for the AUSM scheme. Fig. 4 shows the results obtained with the first implementation

based on the nodal Mach numbers which, as mentioned earlier, is the original pressure splitting

employed in the AUSM scheme (Liou & Steffen [7]). Fig. 6 shows the results obtained with the

second implementation of the pressure flux which is similar to the CUSP scheme (Jameson [25]). It

can be seen that this approach is much more sensitive than the CVS and yields substantial oscillations

when pressure splitting based on the interface Mach number is employed. Combining the various

aspects discussed, including the choice of the dependent variables as well as the estimation of the

variables on the control surfaces, it is clear that the detailed implementation is often as critical as the

overall formulation of both the CVS and the AUSM schemes.
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4.2 Longitudinal Combustion Instability Problem

This test case has been devised by Shyy et aI. [ 12] to investigate the interaction of convection

and a source term in the form of heat release. It involves pressure oscillations in a one--dimensional

model of a combustor which are sustained by the oscillations of heat release. The heat release in the

combustor is specified using a simple model based on some experimental observations. The details

of_theheat release model have been presented in Shyy et aI. [12]. The ifiteraction of the he-at release

source term and the convective and acoustic mechanisms in the system can lead to non-physical high

frequency oscillations in some solution profiles. These numerical oscillations, besides being

fundamentally undesirable from a numerical accuracy point of view, may lead to an instability of the

computation or even trigger nonlinear instabilities in the system. In this regard, this problem is quite

a stringent test case for any numerical scheme which seeks to coordinate convection and acoustic

wave propagation with source term effects such as heat release effects. The value of_, _ At/Ax is 0.03

and the simulation is carded on for 2 × 10 6 time steps. Results are presented in the form of the

following:

(i) pressure and temperature mode shapes plotted at the last ten instants which are 10 4

time steps apart, shown in Fig. 8, and

(ii) pressure and heat release time series at the location x=0.75 for the last 4 × 104 time steps,

shown in Fig. 9.

The following schemes are used:

(a) CVS with 6=0.0 and pressure splitting with Formulation 2

(b) Second--order AUSM scheme

(c) Second-order Roe scheme

For the CVS, central differencing of the pressure flux along with a lower amount of damping (6=0.0)

leads to spurious oscillations in some of the pressure mode shapes (see the results in Shyy et al. [ 12]).

These oscillations can be suppressed with a sufficiently high dose of dissipation by increasing the

value of 6 to 0.8 or higher [12]. This extra dissipation, of course, leads to a smearing of solution

profiles which is manifested in the form of reduced magnitudes of all the mode shapes. This can be

resolved by treating pressure as a source term along with heat release and imparting a special

treatment such as Strang's operator splitting method (Thakur & Shyy [8,9]). Such a special source

term treatment yields an improved accuracy with no spurious oscillations [ 12]. However, this is at an

increased computational expense which can be avoided by splitting the pressure flux in an

appropriate manner as discussed earlier in this work.

As seen from Figs. 8 and 9, the results obtained with the CVS along with splitting of the

pressure flux, employing Formulation 2 of the convective and pressure fluxes are quite satisfactory

and comparable in accuracy to those obtained with the second--order Roe scheme. The CVS is able to

coordinate the interaction of pressure oscillations and the heat release in an appropriate manner and

no spurious oscillations are observed. The CVS yields pressure mode shapes with slightly larger

magnitudes compared to those resulting from the second-order AUSM and Roe schemes.

The second-order AUSM scheme also yields results comparable in accuracy to those

obtained with the second-order Roe scheme. However, slight oscillations are observed in mode 3

(Fig. 8) of the pressure mode shapes in the region given by x=0.6 to x=0.8. Overall, the CVS, the
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AUSM andtheRoeschemesyieldresultsverycomparablein accuracy.However,onecanobserve
from themodeshapesof thevariables(especiallypressure)thattheresultsobtainedby thesethree
schemesarenotexactlyinphase.This istobeexpectedbecausethereisadifferencein thedispersive
and dissipativecharacteristicsamongthe schemes,which, howeversmall,will result in a slight
differencein thephasecharacteristicsof thesolution,especiallyafter2X 106time steps.

5. Pressure-Based Solver for Multi-Dimensional Flows

The pressure-based method employed for steady state solutions of the Navier-Stokes

equations in the present study is in the spirit of the well known SIMPLE (Semi-Implicit Method for

Pressure-Linked Equations) algorithm [13]. This algorithm was originally developed for

incompressible flows and has been successfully extended to solve compressible flows by modifying

the pressure correction equation to take the effect of variation of density on pressure into account

[14, 23]. Additionally, the algorithm has been extended to body-fitted curvilinear coordinates in

order to handle arbitrarily-shaped flow boundaries [14].

The present pressure-based algorithm employs a control volume approach and uses a

staggered grid for the velocity components and the scalar variables like pressure, in order to avoid

a checkerboard pressure distribution. The algorithm solves the governing equations in a sequential

manner. The velocity components are computed from the respective momentum equations. The

velocity and the pressure fields are corrected using a pressure correction equation which is derived

by manipulating the continuity and the momentum equations. The correction procedure leads to a

continuity-satisfying velocity field. The whole process is repeated until the desired convergence is

reached.

Both the CVS and AUSMD schemes are implemented in the present pressure-based

algorithm. As pointed out in Section 2.1.3, the convective fluxes of the CVS and AUSMD schemes

are identical for steady state applications except for the computation of the interface convective

velocities.

5.1 Momentum Equations

For a two--dimensional fluid flow problem, the momentum equations in body-fitted

coordinates can be written as follows:

JO(o_) + 0-_(oU@) + _(_oV_) = _[-_(qlcP_ - q2cP,1) ] + -_

where x_, x_, y_ and y_ are the metrics associated with the curvilinear grid. A typical control volume

is shown in Fig. 10. J (the Jacobian of the transformation), ql, q2 and q3 are given by the following

J = x_ Y,7 - YrI x_/ (54a)

ql = x2 + Y_ (54b)

q2 = x_ xrt + y_ Y,7 (54c)
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q3 = x_ + y_ (54d)

The contravadant components of velocity are given by:

U = uy_ - vx_ (55a)

V = vx¢ - uy¢ (55b)

In the above, ¢p = u or v and/.t is the physical viscosity of the fluid. Integrating the above over the

control volume and arbitrarily taking A _ = A r/ = 1, we get

+[(ov,),- + - =

[-_(q,_- q2_rl)] e - [-_(ql_b_- q2_rl)] w +[_(-q2_b_ + q3_)] n - [-_(-q2q_ + q3_brl )],

+ (-YrlP, + Y, Prl) or (xrlP, --x, Pn) (56)

where the superscript 0 represents the previous time level. For more details, see Shyy [14].

We now formulate the controlled variation scheme (CVS) by formally extending the scheme

from one dimension to the present two--dimensional case. It should be recalled that the convective

fluxes of the CVS and AUSMD schemes are identical for steady state applications except for the

computation of the interface convective velocities. Using the form of the CVS presented in Eq. (52)

independently along the x- and y-directions, Eq. (56) can be expressed, for steady flow, as follows:

c7+,/_(___ _,,,1,,+1- c;'_l/2(_,,- ,pw)"+' + C;+I/2(_N"- _,,,1"+'- c,_1/2,_,,"(_, - 4,s)"+'

= D n 1/2(_E _p)n+l n _ ,W) n+li+ -- -- Di- I/2(_P (57)

+ Dn 1 ,n+l

where the various coefficients are given by

1 a:
Ci+i/2=loi+l/2[+bi+l/2-Qi+i/2][a+_(ri+l/2)] (58a)

- e,cDi± I/2 ql i± 1/2 e/w

and bi+ 1/2' etc. are the interface velocities. 3' is the source term consisting of pressure gradient and

viscous cross-derivative terms as well as the remaining higher--order contributions from the

convective fluxes. Note that the subscript i is used to denote the l-direction and j to denote the

r/-direction.

Using the conventional notation for the SIMPLE algorithm [ 13], Eq. (57) can be written as

A_p v = AL-qbE + A_w + A_b N + As_ s + S (59)

where
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lu
Aw= [-Jql]i_l/2

AE= [_ql]i+l/2

As= [_q3]j_l/2

AN= [_q3]j+l/2

1 1,2][1-- 2 0i- 1/2 [ -- bi- 1/2 - Qi-

1
-- _ 0i+1/2 [ bi+l/2

1 oj-1/2[-b-- _ 1/2

1
-- _ Oj+l/2 [ bj+l/2

- Qi+l/2] [

- aj-l/2] [ 1

- Qj+I/2] [ 1

1 r +

1+x_(r,_,,,)]
1 ++:(r,,,2)]

Ap = A w + A E + A s + A N

(60a)

(60b)

(60c)

(60d)

(60e)

1
S=-_

+1
1
4

÷¼

Qi+3,2" _(r/_3,2)" {-- bi+3,2 + Qi+3,2}" (q_i+2 - _i+l)

,(r:..) { <,,, ,,
0j+3/2" 7:(rj_3,2)"{- bj+3/2 + Qj+3/2}" (_j+2 - q_j+l)

(60f)

- [(_q2qb_)i+l/2- (_q2_)i_l/2] - [(-_q2dP_)j+l/2- (_q2_)j_l/2] + P*

In the above, P'represents terms involving pressure. It can be observed that the above form is

spatially a five-point scheme along both directions which can be conveniently solved using the ADI

method along with a tridiagonal matrix solver. Also, it should be noted that the coefficient matrix

has a dominant diagonal.

For the boundary control volumes, first-order numerical fluxes are employed to obtain the

coefficients A E, A W , etc.

5.2 Pressure Correction Equation

The equation of continuity is represented indirectly by the pressure correction equation since

pressure, not density, is the primary variable in the SIMPLE algorithm [ 13]. The pressure correction

equation consists of mass flux terms (oU)* and (oV)*as well as correction terms on the

pressure-correction control volume interfaces along the _- and r/-directions [14]. The superscript

(*) indicates that these mass fluxes do not satisfy the continuity equation during the course of

iteration (hence the need for pressure and velocity correction). The velocity correction terms are

related to pressure corrections. Additionally, for compressible flows, the variation of density must

also be accounted for via density corrections which are also related to pressure corrections through

the equation of state. This changes the nature of the pressure correction equation from a pure

19



diffusion equation (for incompressible flows) to a convection-diffusion equation (for compressible

flows). For details the reader is referred to Shyy [14, 23].

Conventionally, the estimation of the mass flux terms is done by utilizing the normal velocity

components located at the faces of the pressure correction control volumes (due to the staggered

grid) and by upwinding the density based on the direction of the interfacial normal velocity [23],

i.e.,

(OU)i+ 1/2

where 0+1/2) refers to the east face of the pressure correction control volume. The above

conventional flux estimation is only first--order accurate. The superscript (*) has been dropped in

the above for convenience. It should be noted that the above estimation of the mass flux is identical

to that by the AUSMD scheme (Wada & Liou [18]) except, again, the estimation of the interface

velocity is different.

In the present work, we also investigate a second-order estimation of the mass flux

(QU)I2+)I/2 = (QU)II+)I/2 + l_p(r?-l/2)" { bi-l/2 + Oi-ll2 } " (Oi- Oi-1)

+ 1_(r/_112)" {- bi+3/2 + Qi+312}" (Oi+2- Oi+l) (64)

where b i 112 _ Ui-1/2 ,etc. and the ratios r +- i+ 1/2 are the same as in Eq. (47).

It should be noted that the remaining terms in the pressure correction equation, i.e., the ones

involving velocity and density corrections, only contribute to the stability, not accuracy, of the

overall algorithm. These terms vanish when overall convergence is achieved since we obtain a

continuity-satisfying velocity field at convergence (for which pressure correction is zero

everywhere, up to machine accuracy).

5.3 Additional Issues Due to the Staggered Grid Layout

An important issue in the CVS and AUSM type schemes is the estimation of interracial

convective velocities and pressures. Due to the staggered grid arrangement conventionally used in

pressure-based algorithms, additional issues have to be addressed as follows.

5.3.1

have:

CVS

As mentioned earlier, in the CVS, a straightforward two-point averaging is used. Thus, we

(61a)

(61b)

It should be noted that the above interpolations result from the staggered nature of the grids

employed for the velocity components. Due to the staggered location of the scalar variables such

bi+l/2 =- bi+l/2j = l(uid + Ui+Ij)

bj+ll 2 =-- bitj+l/2 = l(vid + Vij+l )
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as pressure and density, these variables are readily available at some of the control volume interfaces

(east and west faces for u-control volumes, and north and south faces for v-control volumes).

Wherever density is required at a point away from the scalar nodes, it is upwinded based on the

direction of the local normal velocity component. The pressure values at the u- and v-velocity nodes

are obtained by the pressure splitting given by Eq. (24). The local Mach numbers required for this

splitting along the t- and r/-directions are obtained from the local normal velocity and the local

speed of sound:

+ +
m_ = _/_Pij/Oid mq = _/_Pi,i/Oid (62)

On a staggered grid, for a u-control volume, for example, along the t- direction, the values

of pressure at the interfaces (i+1/2 and i-1/2) is known from the existing pressure values at the

interfaces (due to the staggered grid, shown in Fig. 10). Pressure itself is computed from the pressure

correction equation in which the mass fluxes are computed by upwinding density based on the

interface convective velocity. Thus, there is no need for splitting pressure in order to get the interface

pressures for either u-control volumes along the t-direction and v-control volumes along the

r/-direction. In the remaining direction for each of the control volumes, however, one can employ

the splitting formula to obtain interface pressures.

5.3.2 AUSM

The AUSM type schemes use a splitting formula based on the local Mach number to compute

the interface velocities as well as interface pressures. For a staggered grid layout, such as the one

employed in the present algorithm, the velocity components and scalar variables (pressure and

density) are not located at the same node. This brings up another issue (for the AUSMD scheme),

namely, the estimation of Mach number at the locations corresponding of u, v and p, which are half

a cell length apart from each other. For example, along the t--direction, for the u-control volumes,

p is located on the control volume interfaces and for the p control volumes, u is located on the

interfaces. Thus, we need to estimate local Mach numbers along the the t- and r/-directions at the

nodes as well as the interfaces of u, v and p control volumes. This requires, for example, the values

ofp and Q (to compute the speed of sound for the Mach number computation for u-splitting) at the

u-location and values of u (the local convection speed of for the Mach number computation for

p-splitting) at the p-location. Presently, this is handled via an iterative process as follows.

Considering the t--direction, for example

Step 1: the Mach number at the location ofp is estimated initially by Eq. (62).

Step 2: this Mach number is used to split p and these split values ofp are used to estimate p at the

locations of u. The density values at the locations of u are obtained by upwinding based on

the local U (normal velocity along the t--direction).

Step 3: Based on these p and _, the Mach number at the location of u is obtained.

Step 4: This Mach number is used to split U and these split values of U are used to estimate an

averaged value of U at the p locations.

Step 5: Steps 1 through 4 are repeated a few times (typically five) until convergence is achieved.
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6. Results of Two-Dimensional Computations

In order to investigate the performance of the CVS and AUSM type schemes for

two-dimensional compressible flows involving shocks, a supersonic flow over a wedge is chosen

as a test case. Both first- and second--order CVS and AUSM schemes (minmod limiter is used for

the second--order fluxes) for the momentum equations as well as the mass flux estimation in the

pressure correction equation are investigated. Results obtained using the Roe scheme (implemented

in a density-based algorithm) are also presented for comparison with the CVS and AUSM schemes.

This problem consists of an oblique shock, generated by a supersonic flow over a wedge,

and its subsequent reflections by a solid flat plate underneath the wedge and the wedge surface itself

and has been investigated by Wang & Widhopf [24] among others. A schematic of the flow is

depicted in Fig. 11. The inlet Mach number is 2.9 and the wedge angle is 10.94". Two grid systems

are used for the computations, namely, those consisting of 101 x 21 and 201 x41 uniformly

distributed nodes. The location of the leading edge of the wedge is at the discontinuity in the slope

of the top boundary of the grid layout.

The upstream boundary condition specifies the incoming flow at the given Mach number

whereas a zero--order extrapolation is used for the downstream boundary condition (at the exit). The

entire bottom boundary and the wedge part of the top boundary are reflecting surfaces and thus the

normal velocity components there are specified as zero.

The results are presented in Figs. 12-14 in the form of thirty pressure contours with equal

increments between the minimum and maximum pressure values. For all the cases using the CVS,

AUSM and Roe schemes, on both the grids, the correct pressure jump and shock angles are

predicted. However, using the first-order schemes on the 10I × 21 grid the shock is excessively

smeared, as seen in Fig. 12. Even with the refined grid (201 X41 nodes), the first--order flux

estimation does not yield a grid-independent solution. The accuracy improves when the momentum

fluxes and the mass fluxes in the pressure correction equation are estimated using the second-order

CVS along with the minmod limiter, as seen in Fig. 13. On the refined grid (201 X 41 nodes), for

example, a crisp shock structure can be observed (Fig. 13). It can be observed from the results that

both the CVS and AUSM schemes implemented in the pressure-based solver yield accuracy

comparable to the Roe scheme (Fig. 14).

7. Concluding Remarks

The separate treatment of convective and pressure fluxes is a key feature of all

pressure-based algorithms for multi--dimensional fluid flows. Some recently developed schemes

based on separate treatment of convective and pressure fluxes D such as the controlled variation

scheme (CVS) the AUSM type schemes D are thus very naturally amenable for application in these

algorithms. The approach of treating the convective and pressure fluxes in the Euler and

Navier-Stokes equations as two distinct, though coupled, entities, appears to be very promising, as

demonstrated by the results in the present and previous works [7,18]. The upwinding of the

convective flux and the splitting of the pressure fluxes (based on local Mach number) achieve the

proper propagation of signals in the system, yielding high resolution in the solution profiles with no
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spurious oscillations. Such an approach can also be effective in the presence of source terms as

demonstrated by the results of the longitudinal combustion instability prob]em. Overall, both the

CVS and the AUSM schemes yield accuracy comparable to the Roe scheme.

Both the CVS and the AUSM scheme yield accurate results for two-dimensional

compressible flows, using a pressure-based algorithm. It has been demonstrated that, with these

schemes, the pressure-based algorithms can indeed be very robust and accurate for compressible

flows involving shocks, in addition to their well-established robustness for incompressible flows.
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Fig. 11. Schematic of the supersonic flow over a wedge.

34



(a)First-order CVS for all the equations on the 101 × 21 grid.

(b) First-order AUSM for all the equations on the 101 ><21 grid.

(c) First-order CVS for all the equations on the 201 × 41 grid.

(d) First-order AUSM for all the equations on the 201 ×41 grid.

Fig. 12. Pressure contours for a supersonic flow (inlet Mach number = 2.9) over a wedge (angle

10.94 °) on the 101 ×21 and 201 ×41 grids using fh-st--order CVS and AUSM schemes.
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(a)Second-orderCVS for all theequationson the 101× 21 grid.

(b) Second-orderAUSM for all theequationson the 101X 21grid.

(c) Second-orderCVSfor all theequationson the201X 41grid.

(d) Second-orderAUSM for all theequationson the201X41 grid.

Fig. 13.Pressurecontoursfor a supersonicflow (inlet Machnumber= 2.9)overawedge(angle
10.94°) on the 101x21 and201X41 gridsusingsecond-orderCVS andAUSM schemes.
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(a)Second-orderRoeschemeon the 101X21 grid.

Co)Second-orderRoeschemeon the201×41 grid.

Fig. 14.Pressurecontoursfor asupersonicflow (inlet Machnumber= 2.9)overawedge(angle
10.94°) on the 101X21 and201X41 gridsusingthesecond-orderRoescheme.
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